Progression of Skills and Knowledge: Design and Technology

1. These are the overarching

 skills and knowledge strands that are taught in D\&T. Each of these skills are incorporated and built upon during each of the units of D\&T explained below.\qquad

Stokesay's Design and Technology Curriculum
2. These are the units of work that will be studied across school. The first 4 units are taught throughout school, while the last 2 are only taught in KS2.

As previously mentioned, the 5 skills/ knowledge strands explained above are all incorporated into each unit that is studied.

Structures

		Year 1/2 (Windmill)	Year 1/2 (Baby Bear's Chair)	Year 3/4 (Constructing a volcano)	Year 5/6 (Bridges)
	Design	- Learning the importance of a clear design criteria. - Including individual preferences and requirements in a design.	- Generating and communicating ideas using sketching and modelling. - Learning about different types of structures, found in the natural world and in everyday objects.	- Designing a volcano with key features to appeal to a specific person/purpose. - Drawing and labelling a castle design using 2D shapes, labelling: -the 3D shapes that will create the features - materials needed and colours. - Designing and/or decorating a castle tower on CAD software.	- Designing a stable structure that is able to support weight. - Creating a frame structure with a focus on triangulation.
$\begin{aligned} & \text { 兹 } \\ & \text { 亭 } \end{aligned}$	Make	- Making stable structures from card, tape and glue . - Learning how to turn 2D nets into 3D structures. - Following instructions to cut and assemble the supporting structure of a windmill. - Making functioning turbines and axles which are assembled into a main supporting structure.	- Making a structure according to design criteria. - Creating joints and structures from paper/card and tape. - Building a strong and stiff structure by folding paper.	- Constructing a range of 3D geometric shapes using nets - Creating special features for individual designs. - Making facades from a range of recycled materials.	- Making a range of different shaped beam bridges. - Using triangles to create truss bridges that span a given distance and support a load. - Building a wooden bridge structure. - Independently measuring and marking wood accurately. - Selecting appropriate tools and equipment for particular tasks. - Using the correct techniques to saws safely. - Identifying where a structure needs reinforcement and using card corners for support. - Explaining why selecting appropriating materials is an important part of the design process. - Understanding basic wood functional properties.
	Evaluate	- Evaluating a windmill according to the design criteria, testing whether the structure is strong and stable and altering it if it isn't - Suggest points for improvements	- Exploring the features of structures. - Comparing the stability of different shapes. - Testing the strength of own structures. - Identifying the weakest part of a structure. - Evaluating the strength, stiffness and stability of own structure.	- Evaluating own work and the work of others based on the aesthetic of the finished product and in comparison to the original design. - Suggesting points for modification of the individual designs.	- Adapting and improving own bridge structure by identifying points of weakness and reinforcing them as necessary. - Suggesting points for improvements for own bridges and those designed by others.
	Technical knowledge	- To understand that the shape of materials can be changed to improve the strength and stiffness of structures. - To understand that cylinders are a strong type of structure (e.g. the main shape used for windmills and lighthouses). - To understand that axles are used in structures and mechanisms to make parts turn in a circle. - To begin to understand that different structures are used for different purposes. - To know that a structure is something that has been made and put together.	- To know that shapes and structures with wide, flat bases or legs are the most stable. - To understand that the shape of a structure affects its strength. - To know that materials can be manipulated to improve strength and stiffness. - To know that a structure is something which has been formed or made from parts. - To know that a 'stable' structure is one which is firmly fixed and unlikely to change or move. - To know that a 'strong' structure is one which does not break easily. - To know that a 'stiff' structure or material is one which does not bend easily.	- To understand that wide and flat based objects are more stable. - To understand the importance of strength and stiffness in structures.	- To understand some different ways to reinforce structures. - To understand how triangles can be used to reinforce bridges. - To know that properties are words that describe the form and function of materials. - To understand why material selection is important based on properties. - To understand the material (functional and aesthetic) properties of wood.
$\begin{aligned} & \overline{3} \\ & \text { 훌 } \end{aligned}$	Additional, specific knowledge	- To know that a client is the person I am designing for. - To know that design criteria is a list of points to ensure the product meets the clients needs and wants. - To know that a windmill harnesses the power of wind for a purpose like grinding grain, pumping water or generating electricity. - To know that windmill turbines use wind to turn and make the machines inside work. - To know that a windmill is a structure with sails that are moved by the wind. - To know the three main parts of a windmill are the turbine, axle and structure.	- To know that natural structures are those found in nature. - To know that man-made structures are those made by people.	- To know the following features of a volcano - and their purposes. - To know that a facade is the front of a structure. - To know that a paper net is a flat 2D shape that can become a 3 D shape once assembled. - To know that a design specification is a list of success criteria for a product.	- To understand the difference between arch, beam, truss and suspension bridges. - To understand how to carry and use a saw safely.

Mechanisms/ Mechanical Systems

		$\begin{gathered} \text { Year 1/2 } \\ \text { (Moving Monster) } \end{gathered}$	Year 1/2 (Wheels and axels)	$\begin{gathered} \text { Year 3/4 } \\ \text { (Pneumatic toys) } \end{gathered}$	$\begin{gathered} \text { Year 5/6 } \\ \text { (Automata toys) } \end{gathered}$
㪯	Design	- Creating a class design criteria for a moving monster. - Designing a moving monster for a specific audience in accordance with a design criteria.	- Designing a vehicle that includes wheels, axles and axle holders, that when combined, will allow the wheels to move. - Creating clearly labelled drawings that illustrate movement.	- Designing a toy which uses a pneumatic system. - Developing design criteria from a design brief. - Generating ideas using thumbnail sketches and exploded diagrams. - Learning that different types of drawings are used in design to explain ideas clearly.	-Experimenting with a range of cams, creating a design for an automata toy based on a choice of cam to create a desired movement. - Understanding how linkages change the direction of a force. - Making things move at the same time. - Understanding and drawing cross-sectional diagrams to show the inner-workings of my design.
	Make	- Making linkages using card for levers and split pins for pivots. - Experimenting with linkages adjusting the widths, lengths and thicknesses of card used. - Cutting and assembling components neatly.	- Adapting mechanisms, when: they do not work as they should. to fit their vehicle design. - to improve how they work after testing their vehicle.	- Creating a pneumatic system to create a desired motion. - Building secure housing for a pneumatic system. - Using syringes and balloons to create different types of pneumatic systems to make a functional and appealing pneumatic toy. - Selecting materials due to their functional and aesthetic characteristics. - Manipulating materials to create different effects by cutting, creasing, folding and weaving.	- Measuring, marking and checking the accuracy of the jelutong and dowel pieces required. - Measuring, marking and cutting components accurately using a ruler and scissors. - Assembling components accurately to make a stable frame. - Understanding that for the frame to function effectively the components must be cut accurately and the joints of the frame secured at right angles. - Selecting appropriate materials based on the materials being joined and the speed at which the glue needs to dry/set.
	Evaluate	- Evaluating own designs against design criteria. - Using peer feedback to modify a final design.	- Testing wheel and axle mechanisms, identifying what stops the wheels from turning, and recognising that a wheel needs an axle in order to move.	- Using the views of others to improve designs. - Testing and modifying the outcome, suggesting improvements. - Understanding the purpose of exploded-diagrams through the eyes of a designer and their client.	- Evaluating the work of others and receiving feedback on own work. - Applying points of improvement to their toys. - Describing changes they would make/do if they were to do the project again.
	Technical knowledge	- To know that mechanisms are a collection of moving parts that work together as a machine to produce movement. - To know that there is always an input and output in a mechanism. - To know that an input is the energy that is used to start something working. - To know that an output is the movement that happens as a result of the input. - To know that a lever is something that turns on a pivot. - To know that a linkage mechanism is made up of a series of levers.	- To know that wheels need to be round to rotate and move. - To understand that for a wheel to move it must be attached to a rotating axle. - To know that an axle moves within an axle holder which is fixed to the vehicle or toy. - To know that the frame of a vehicle (chassis) needs to be balanced.	- To understand how pneumatic systems work. - To understand that pneumatic systems can be used as part of a mechanism. - To know that pneumatic systems operate by drawing in, releasing and compressing air.	- To understand that the mechanism in an automata uses a system of cams, axles and followers. - To understand that different shaped cams produce different outputs.
	Additional, specific knowledge	- To know some real-life objects that contain mechanisms.	- To know some real-life items that use wheels such as wheelbarrows, hamster wheels and vehicles.	- To understand how sketches, drawings and diagrams can be used to communicate design ideas. - To know that exploded-diagrams are used to show how different parts of a product fit together. - To know that thumbnail sketches are small drawings to get ideas down on paper quickly.	- To know that an automata is a hand powered mechanical toy. - To know that a cross-sectional diagram shows the inner workings of a product. - To understand how to use a bench hook and saw safely. - To know that a set square can be used to help mark 90° angles.

Textiles

		Year 1/2 (Pouches)	Year 1/2 (Puppets)	Year 3/4 (Cushions)	$\begin{gathered} \text { Year 5/6 } \\ \text { (Stuffed toys) } \end{gathered}$
$\frac{\text { 气 }}{\text { 㐘 }}$	Design	- Designing a pouch.	- Using a template to create a design for a puppet.	- Designing and making a template from an existing cushion and applying individual design criteria.	- Designing a stuffed toy, considering the main component shapes required and creating an appropriate template. - Considering the proportions of individual components.
	Make	- Selecting and cutting fabrics for sewing. - Decorating a pouch using fabric glue or running stitch. - Threading a needle. - Sewing running stitch, with evenly spaced, neat, even stitches to join fabric. - Neatly pinning and cutting fabric using a template.	- Cutting fabric neatly with scissors. - Using joining methods to decorate a puppet. - Sequencing the steps taken during construction.	- Following design criteria to create a cushion. - Selecting and cutting fabrics with ease using fabric scissors. - Threading needles with greater independence. - Tying knots with greater independence. - Sewing cross stitch to join fabric. - Decorating fabric using appliqué. - Completing design ideas with stuffing and sewing the edges.	- Creating a 3D stuffed toy from a 2D design. - Measuring, marking and cutting fabric accurately and independently. - Creating strong and secure blanket stitches when joining fabric. - Threading needles independently. - Using appliqué to attach pieces of fabric decoration. - Sewing blanket stitch to join fabric. - Applying blanket stitch so the spaces between the stitches are even and regular.
	Evaluate	- Troubleshooting scenarios posed by the teacher. - Evaluating the quality of the stitching on others' work. - Discussing as a class the success of their stitching against the success criteria. - Identifying aspects of their peers' work that they particularly like and explaining why.	- Reflecting on a finished product, explaining likes and dislikes.	- Evaluating an end product and thinking of other ways in which to create similar items.	- Testing and evaluating an end product and giving point for further improvements.
	Technical knowledge	- To know that sewing is a method of joining fabric. - To know that different stitches can be used when sewing. - To understand the importance of tying a knot after sewing the final stitch. - To know that a thimble can be used to protect my fingers when sewing.	- To know that 'joining technique' means connecting two pieces of material together. - To know that there are various temporary methods of joining fabric by using staples. glue or pins. - To understand that different techniques for joining materials can be used for different purposes. - To understand that a template (or fabric pattern) is used to cut out the same shape multiple times. - To know that drawing a design idea is useful to see how an idea will look.	-To know that applique is a way of mending or decorating a textile by applying smaller pieces of fabric to larger pieces. - To know that when two edges of fabric have been joined together it is called a seam. - To know that it is important to leave space on the fabric for the seam. -To understand that some products are turned inside out after sewing so the stitching is hidden.	- To know that blanket stitch is useful to reinforce the edges of a fabric material or join two pieces of fabric. - To understand that it is easier to finish simpler designs to a high standard. - To know that soft toys are often made by creating appendages separately and then attaching them to the main body. - To know that small, neat stitches which are pulled taut are important to ensure that the soft toy is strong and holds the stuffing securely.

Cooking and Nutrition

		Year 1/2 (Fruit and veg)	Year 1/2 (A balanced diet)	Year 3/4 (Adapting a recipe)	Year 5/6 (What could be healthier)
	Design	- Designing smoothie carton packaging by-hand or on ICT software.	- Designing a healthy wrap based on a food combination which works well together.	- Designing a biscuit within a given budget, drawing upon previous taste testing judgements.	- Adapting a traditional recipe, understanding that the nutritional value of a recipe alters if you remove, substitute or add additional ingredients. - Writing an amended method for a recipe to incorporate the relevant changes to ingredients. - Designing appealing packaging to reflect a recipe.
	Make	- Chopping fruit and vegetables safely to make a smoothie. - Identifying if a food is a fruit or a vegetable. - Learning where and how fruits and vegetables grow.	- Slicing food safely using the bridge or claw grip. - Constructing a wrap that meets a design brief.	- Following a baking recipe, from start to finish, including the preparation of ingredients. - Cooking safely, following basic hygiene rules. - Adapting a recipe to improve it or change it to meet new criteria (e.g. from savoury to sweet).	- Cutting and preparing vegetables safely. - Using equipment safely, including knives, hot pans and hobs. - Knowing how to avoid cross-contamination. - Following a step by step method carefully to make a recipe.
	Evaluate	- Tasting and evaluating different food combinations. - Describing appearance, smell and taste. - Suggesting information to be included on packaging.	- Describing the taste, texture and smell of fruit and vegetables. - Taste testing food combinations and final products.	- Evaluating a recipe, considering: taste, smell, texture and appearance.	- Identifying the nutritional differences between different products and recipes.

Understanding the difference between fruits and

 egetables.To understand that some foods typically known as egetables are actually fruits (e.g. cucumber)
To know that a blender is a machine which mixes ngredients together into a smooth liquid. fruit has seeds and a vegetable does not.
To know that fruits grow on trees or vines.
To know that vegetables can grow either above or below ground.

- To know that vegetables can come from different parts of the plant (e.g. roots: potatoes, leaves: lettuce, fruit: cucumber).
- Evaluating which grip was most effective
- To know that 'diet' means the food and drink that a person or animal usually eats.
- To understand what makes a balanced diet.
- To know where to find the nutritional information on packaging.
- To know that the five main food groups are Carbohydrates, fruits and vegetables, protein, dairy and oods high in fat and sugar
To understand that I should eat a range of different foods from each food group,
and roughly how much of each food group.
- To know that nutrients are substances in food that all living things need to make energy, grow and develop. - To know that 'ingredients' means the items in a mixture or recipe.
To know that I should only have a maximum of five teaspoons of sugar a day to stay healthy.
To know that many food and drinks we do not expect - To know that many food and drinks we do not ex
to contain sugar do; we call these 'hidden sugars'.

Describing the impact of the budget on the selection

 of ingredients.Evaluating and comparing a range of food products. - Suggesting modifications to a recipe (e.g. This biscuit has too many raisins, and it is falling apart, so next time I will use less raisins.)

- To know that the amount of an ingredient in a recipe known as the 'quantity.'
- To know that it is important to use oven gloves when emoving hot food from an oven
To know the following cooking techniques: sieving creaming, rubbing method, cooling.
-To understand the importance of budgeting while planning ingredients for biscuits.
- Identifying and describing healthy benefits of food groups.
- To understand where meat comes from - learning that beef is from cattle and how beef is reared and processed, including key welfare issues.
- To know that I can adapt a recipe to make it healthier by substituting ingredients.
- To know that I can use a nutritional calculator to see how healthy a food option is.
- To understand that 'cross-contamination' means bacteria and germs have been passed onto ready-to eat foods and it happens when these foods mix with raw meat or unclean objects.

Electrical Systems (KS2 only)

		Year 3/4 (Torches)	Year 5/6 (Doodlers)
$\begin{aligned} & \text { 亮 } \\ & \text { 曹 } \end{aligned}$	Design	- Designing a torch, giving consideration to the target audience and creating both design and success criteria focusing on features of individual design ideas.	- Identifying factors that could be changed on existing products and explaining how these would alter the form and function of the product. - Developing design criteria based on findings from investigating existing products. - Developing design criteria that clarifies the target user.
	Make	- Making a torch with a working electrical circuit and switch. - Using appropriate equipment to cut and attach materials. - Assembling a torch according to the design and success criteria.	- Altering a product's form and function by tinkering with its configuration. - Making a functional series circuit, incorporating a motor. - Constructing a product with consideration for the design criteria. - Breaking down the construction process into steps so that others can makethe product.
	Evaluate	- Evaluating electrical products. - Testing and evaluating the success of a final product.	- Carry out a product analysis to look at the purpose of a product along with its strengths and weaknesses. - Determining which parts of a product affect its function and which parts affect its form. - Analysing whether changes in configuration positively or negatively affect an existing product. - Peer evaluating a set of instructions to build a product.
$\begin{aligned} & \frac{\text { bo }}{0} \\ & \frac{0}{3} \\ & \text { o } \\ & \underline{z} \end{aligned}$	Technical knowledge	- To understand that electrical conductors are materials which electricity can pass through. - To understand that electrical insulators are materials which electricity cannot pass through. - To know that a battery contains stored electricity that can be used to power products. - To know that an electrical circuit must be complete for electricity to flow. - To know that a switch can be used to complete and break an electrical circuit.	- To know that series circuits only have one direction for the electricity to flow. - To know when there is a break in a series circuit, all components turn off. - To know that an electric motor converts electrical energy into rotational movement, causing the motor's axle to spin. - To know a motorised product is one which uses a motor to function.

To know the features of a torch: case, contacts, batteries, switch, reflector, lamp, lens. - To know facts from the history and invention of the electric light bulb(s) - by Sir Joseph Swan and Thomas Edison.

- To know that product analysis is critiquing the strengths and weaknesses of a product. - To know that 'configuration' means how the parts of a product are arranged.

Digital World (KS2 only)

		Year 3/4 (Mindful Moments Time)	Year 5/6 (Navigating the world)
$\frac{\text { 粒 }}{}$	Design	- Writing design criteria for a programmed timer (Micro:bit). - Exploring different mindfulness strategies. - Applying the results of $m y$ research to further inform my design criteria. - Developing a prototype case for my mindful moment timer. - Using and manipulating shapes and clipart by using computer-aided design (CAD), to produce a logo. - Following a list of design requirements.	- Writing a design brief from information submitted by a client. - Developing design criteria to fulfil the client's request. - Considering and suggesting additional functions for my navigation tool. - Developing a product idea through annotated sketches. - Placing and manoeuvring 3D objects, using CAD. - Changing the properties of, or combining one or more 3D objects, using CAD.
	Make	- Developing a prototype case for my mindful moment timer. - Creating a 3D structure using a net. - Programming a micro:bit in the Microsoft micro:bit editor, to time a set number of seconds/minutes upon button press..	- Considering materials and their functional properties, especially those that are sustainable and recyclable (for example, cork and bamboo). - Explaining material choices and why they were chosen as part of a product concept. - Programming an $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}$ cardinal compass.
	Evaluate	- Investigating and analysing a range of timers by identifying and comparing their advantages and disadvantages. - Evaluating my Micro:bit program against points on my design criteria and amending them to include any changes I made. - Documenting and evaluating my project. - Understanding what a logo is and why they are important in the world of design and business. - Testing my program for bugs (errors in the code). - Finding and fixing the bugs (debug) in my code.	- Explaining how my program fits the design criteria and how it would be useful as part of a navigation tool. - Developing an awareness of sustainable design. - Identifying key industries that utilise 3 C CAD modelling and explaining why. - Describing how the product concept fits the client's request and how it will benefit the customers. - Explaining the key functions in my program, including any additions. - Explaining how my program fits the design criteria and how it would be useful as part of a navigation tool. - Explaining the key functions and features of my navigation tool to the client as part of a product concept pitch. - Demonstrating a functional program as part of a product concept pitch.
	Technical knowledge	- To understand what variables are in programming. - To know some of the features of a Micro:bit. - To know that an algorithm is a set of instructions to be followed by the computer. - To know that it is important to check my code for errors (bugs). - To know that a simulator can be used as a way of checking your code works before installing it onto an electronic device.	- To know that accelerometers can detect movement. - To understand that sensors can be useful in products as they mean the product can function without human input.
	Additional, specific knowledge	-To understand the terms 'ergonomic' and 'aesthetic'. -To know that a prototype is a 3D model made out of cheap materials, that allows us to test design ideas and make better decisions about size, shape and materials.	- To know that designers write design briefs and develop design criteria to enable them to fulfil a client's request. - To know that 'multifunctional' means an object or product has more than one function. - To know that magnetometers are devices that measure the Earth's magnetic field to determine which direction you are facing.

